

django-generic-bookmarks

This application provides bookmarks management functionality to
a Django project.

For instance, using bookmarks, users can store their favourite
contents, or items they follow, or topics they like or dislike.

A bookmark connects users to Django contents in a generic way, without
modifying existing models tables, and django-generic-bookmarks exposes
a simple API to handle them, yet allowing the management of bookmarks
in complex scenarios too.

The bookmarks can be stored using different backends.
The default one uses Django models to store user’s preferences in the database,
but it is possible to write customized backends, and the application,
out of the box, includes also a MongoDB backend.

The source code for this app is hosted on
https://bitbucket.org/frankban/django-generic-bookmarks

Contents

	Getting started
	Requirements

	Installation

	Configuration

	Quickstart

	Using handlers
	Custom Handlers

	Handlers API

	Usage and examples
	Simple bookmarks

	Multiple types of bookmarks

	Conditional bookmarks

	Add/remove bookmarks using links

	Using AJAX

	Performance and database denormalization

	Bookmarks and cache

	Retreiving bookmarks

	Annotating user’s bookmarks

	Deleting model instances

	Customization

	Templatetags reference
	bookmark_form

	ajax_bookmark_form

	bookmark

	bookmarks

	Handlers reference
	Default handler

	Library

	Forms reference

	Backends reference
	Writing your own backend

	Django

	MongoDB

	Class based views
	BookmarksForView

	BookmarksByView

	Models reference
	Base models

	In bulk selections

	Abstract models

	Managers

Indices and tables

	Index

	Search Page

Getting started

Requirements

	Python
	>= 2.5

	Django
	>= 1.3

jQuery >= 1.4 is required if you want to take advantage of AJAX features
described above and in Templatetags reference.

pip install mongoengine is needed if you want to use the MongoDB backend.

Installation

The Mercurial repository of the application can be cloned with this command:

hg clone https://bitbucket.org/frankban/django-generic-bookmarks

The bookmarks package, included in the distribution, should be
placed on the PYTHONPATH.

Otherwise you can just pip install django-generic-bookmarks.

Configuration

Add the request context processor in your settings.py, e.g.:

from django.conf.global_settings import TEMPLATE_CONTEXT_PROCESSORS
TEMPLATE_CONTEXT_PROCESSORS += (
 'django.core.context_processors.request',
)

Add 'bookmarks' to the INSTALLED_APPS in your settings.py.

The application, by default, uses Django models to save bookmarks in the
database. If you want to use MongoDB instead, just add in your settings.py:

GENERIC_BOOKMARKS_BACKEND = 'bookmarks.backends.MongoBackend'
GENERIC_BOOKMARKS_MONGODB = {"NAME": "bookmarks"}

See Customization section in this documentation for other settings
options and Backends reference for a detailed description of provided
backends.

Add the bookmarks urls to your urls.py, e.g.:

(r'^bookmarks/', include('bookmarks.urls')),

Time to create the needed database tables using syncdb management command:

./manage.py syncdb

Quickstart

To allow a user to bookmark a Django model instance, the model must be
registered as bookmarkable, i.e. the system must know that instances
of that model can be bookmarked by users.

For example, if you have an Article model and you want users to add
articles to their favourites, you must register the model as bookmarkable,
e.g.:

from bookmarks.handlers import library
library.register(Article)

You can register models anywhere you like. However, you’ll need to make sure
that the module it’s in gets imported early on so that the model gets
registered before any bookmark is saved by the user.
This makes your app’s models.py a good place to put the above code.

Under the hood you have registered the Article model with a default
bookmark handler. Handlers are Python classes encapsulating bookmarking options
for a given model, while library is a singleton registry that stores handlers.
For a detailed explanation see Using handlers.

Now it’s time to let your users add an article to his favourites, and this
is possible using one of the provided templatetags.
In the code below we assume that article is the Article model instance.

{% load bookmarks_tags %}

{% bookmark_form for article %}

This code snippet just displays a form to add or remove the article
from user’s favourites.

AJAX is also supported using jQuery, e.g.:

{% load bookmarks_tags %}

<script src="path/to/jquery.js" type="text/javascript"></script>
<script src="{{ STATIC_URL }}bookmarks/bookmarks.js" type="text/javascript"></script>

{% bookmark_form for article %}

It is possible to get the form as a template variable in the current context
instead of displaying it. This way we can customize the way the form is
presented, e.g.:

{% bookmark_form for article as form %} {# <-- note the 'as' argument #}

<script src="path/to/jquery.js" type="text/javascript"></script>
<script src="{{ STATIC_URL }}bookmarks/bookmarks.js" type="text/javascript"></script>

{% if form %}
 {% if user.is_authenticated %}
 <form action="{% url bookmarks_bookmark %}" method="post" accept-charset="UTF-8" class="bookmarks_form">
 {% csrf_token %}
 {{ form }}
 {% with form.bookmark_exists as exists %}
 {# another hidden input is created to handle javascript submit event #}
 <input class="bookmarks_toggle" type="submit" value="add"{% if exists %} style="display: none;"{% endif %}/>
 <input class="bookmarks_toggle" type="submit" value="remove"{% if not exists %} style="display: none;"{% endif %}/>
 {% endwith %}
 Error during process
 </form>
 {% else %}
 Handle anonymous users.
 {% endif %}
{% endif %}

This application provides other templatetags (e.g.: for bookmarks retreival)
and the bookmark_form has other useful options, explained in detail in
Templatetags reference.

	Note that the form template variable will be None if:

	
	the user is not authenticated

	the instance is not bookmarkable

	the key is not allowed

What is a key? It is a way to define different kind of bookmarks.
For example, a user can add the article to his liked or to his disliked, and
so we need a key to tell the system what he is doing.
But this is an argument for the next section: Using handlers.

Using handlers

As seen in Getting started, a model instance can be bookmarked by users
only if its model class is handled. Being handled, for a model,
means it is registered with a bookmarks handler.

We have seen how to do that:

from bookmarks.handlers import library
library.register(MyModel)

The handler class is an optional argument of the library.register method,
and, if not provided, the default bookmarks.handlers.Handler is used.

The previous code can be written:

from bookmarks.handlers import library, Handler
ratings.register(MyModel, Handler)

For convenience, library.register can also accept a list
of model classes in place of a single model; this allows easier
registration of multiple models with the same handler class, e.g.:

from bookmarks.handlers import library, Handler
ratings.register([Article, BlogEntry], Handler)

You can register models anywhere you like. However, you’ll need to make sure
that the module it’s in gets imported early on so that the model gets
registered before any bookmark is saved by the user.
This makes your app’s models.py a good place to put the above code.

Handlers are Python classes encapsulating bookmarking options for a given
model, and theese options can be overridden while registering a model, e.g.:

from bookmarks.handlers import library, Handler
ratings.register(MyModel, Handler,
 allowed_keys=['likes', 'dislikes'], form_class=MyCustomForm)

	Three things are done in the code snippet above:

	
	MyModel is registered as a bookmarkable model, i.e. users can
save instances of that model as bookmarks.

	Two types of bookmarks are allowed: likes and dislikes.
This means that users can like or dislike MyModel instances
(note that keys are just arbitrary strings)

	MyCustomForm will be used to save bookmarks
(in place of the form provided by the application)

See Handlers reference for a list of all available handlers options.

Later it is possible to retreive the handler instance used to
manage bookmarks for a particular model or instance:

from bookmarks.handlers import library
handler instance for article class
handler = library.get_handler(article)
handler instance for MyModel
handler = library.get_handler(MyModel)

Custom Handlers

There are situations where the built-in options are not sufficient.

What if, for instance, you want to use different forms for staff and normal
users?

As in Django own contrib.admin.ModelAdmin, you can write subclasses of
bookmarks.handlers.Handler to override the methods which actually
perform the bookmark process, and apply any logic you desire.

Here is an example meeting the needs described above:

from bookmakrs.handlers import library, Handler

class MyHandler(Handler):

 def get_form_class(self, request):
 """
 Return the form class that will be used to add or remove bookmarks.
 Default is *self.form_class*.
 """
 return StaffForm if request.user.is_staff else self.form_class

library.register(MyModel, MyHandler)

Examples of handler customizations can be found in Usage and examples.

Handlers API

As seen in Getting started, you can let users add or remove
bookmarks using a simple templatetag:

{% load bookmarks_tags %}

{% bookmark_form for article %}

But what happens when the user clicks to add or remove a bookmark?

The handler is used to do the real work.

1. Key management

Initially the handler is responsable of producing a valid bookmark key.

The key is an arbitrary string representing the type of bookmark we are saving.
For example, users can like an article or hate it, or maybe they want to be
notified on comments of that article. Theese are different types of bookmarks
and can be expressed using different keys
(e.g.: likes, hates, comments).

The two methods called to handle keys are:

	
get_key(self, request, instance, key=None)

	Return the bookmark key to be used to save the bookmark of instance.

Subclasses can return different keys based on the request, on
the given target object instance or the optional key
that can be provided for example by the templatetags.

Here is an example of a templatetag providing a key:

{% load bookmarks_tags %}
{% bookmark_form for article using 'favourite' %}

For example, if you want a different key to be used if the user is
staff, you can override this method in this way:

def get_key(self, request, instance, key=None):
 return 'staff' if request.user.is_superuser else 'normal'

If you do not customize things, this method returns the given key
(if not None) or a default key main.

	
allow_key(self, request, instance, key)

	This method is called when the user tries to bookmark an object
using the given bookmark key (e.g. when the bookmark view is
called with POST data).

The bookmarking process continues only if this method returns True
(i.e. a valid key is passed).

For example, if you want two different bookmarks for each
target object, you can use two forms (each providing a different
key, say ‘main’ and ‘other’) and then allow those keys:

def allow_key(self, request, instance, key):
 return key in ('main', 'other')

By default this method allows keys listed in self.allowed_keys.

See Usage and examples for a deeper explanation of how to handle keys.

2. Bookmark saving

Five handlers methods are involved in bookmarks saving:

	
get_form(self, request, **kwargs)

	that returns the form that actually adds or remove a bookmark,
and that calls...

	
get_form_class(self, request)

	to get the form class used (usually is Handler.form_class
that by default points to bookmarks.forms.BookmarkForm).

	
pre_save(self, request, form)

	Called just before the bookmark is added or removed, this method
takes the request and the form instance.

Subclasses can use this method to check if the bookmark can be saved
or deleted, and, if necessary, block the bookmarking process
returning False.

This method is called by a signals.bookmark_pre_save receiver
always attached to the handler by the registry.

It’s up to the developer if override this method or just connect
another listener to the signal: the bookmarking process is killed
if just one receiver returns False.

	
save(self, request, form)

	Save the bookmark to the database.
Return the saved bookmark.

	
post_save(self, request, bookmark, added)

	Called just after a bookmark is added or removed.

The given arguments are the current request, the just added
or deleted bookmark and the boolean added
(True if the bookmark was added).

This method is called by a signals.bookmark_post_save receiver
always attached to the handler by the registry.

It’s up to the developer if override this method or just connect
another listener to the signal.

By default, this method does noting.

3. HTTP Response

Finally, the reponse to the client is managed by

	
response(self, request, bookmark, created)

	that, by default, calls...

	
ajax_response(self, request, bookmark, created)

	Called if the request is ajax.
Return a JSON reponse containing:

{
 'key': 'the_bookamrk_key',
 'bookmark_id': bookmark.id,
 'user_id': <the id of the bookmarker>,
 'created': <True if bookmark is created, False otherwise>,
}

or

	
normal_response(self, request, bookmark, created)

	Called by self.response when the request is not ajax.
Return a redirect response.

While the complete handlers API is described in Handlers reference, maybe
now it’s time to read Usage and examples.

Usage and examples

As seen previously in Using handlers, we can customize the bookmark process
creating and registering bookmarks handlers.

In this section we will deal with some real-world examples of usage of
Django Generic Bookmarks.

Simple bookmarks

As seen in Getting started, adding bookmarks functionality to a
Django project is straightforward.

It is only needed to register bookmarkable models (Article in our example):

from bookmarks.handlers import library
library.register(Article)

and then to display the form using a templatetag, having article as
an Article model instance:

{% load bookmarks_tags %}

{% bookmark_form for article %}

Multiple types of bookmarks

Assume we want users to follow site contents and/or to share them.
This means that we want two types of bookmark for a single model instance:
let’ say followed and shared.

First, we have to register a model informing the system that the two keys
above are allowed:

from bookmarks.handlers import library, Handler
ratings.register(MyModel, Handler, allowed_keys=['followed', 'shared'])

And then, in the template, we get one bookmark form for each key:

{# follow/unfollow #}

{% bookmark_form for article using 'followed' as follow_form %} {# <-- note the 'using' argument #}

{% if follow_form %}
 {% if user.is_authenticated %}
 <form action="{% url bookmarks_bookmark %}" method="post" accept-charset="UTF-8" class="bookmarks_form">
 {% csrf_token %}
 {{ follow_form }}
 {% with follow_form.bookmark_exists as exists %}
 {# another hidden input is created to handle javascript submit event #}
 <input class="bookmarks_toggle" type="submit" value="follow"{% if exists %} style="display: none;"{% endif %}/>
 <input class="bookmarks_toggle" type="submit" value="stop following"{% if not exists %} style="display: none;"{% endif %}/>
 {% endwith %}
 Errors during process
 </form>
 {% else %}
 Handle anonymous users.
 {% endif %}
{% endif %}

{# share/unshare #}

{% bookmark_form for article using 'shared' as share_form %} {# <-- note the 'using' argument #}

{% if share_form %}
 {% if user.is_authenticated %}
 <form action="{% url bookmarks_bookmark %}" method="post" accept-charset="UTF-8" class="bookmarks_form">
 {% csrf_token %}
 {{ share_form }}
 {% with share_form.bookmark_exists as exists %}
 {# another hidden input is created to handle javascript submit event #}
 <input class="bookmarks_toggle" type="submit" value="share"{% if exists %} style="display: none;"{% endif %}/>
 <input class="bookmarks_toggle" type="submit" value="unshare"{% if not exists %} style="display: none;"{% endif %}/>
 {% endwith %}
 Errors during process
 </form>
 {% else %}
 Handle anonymous users.
 {% endif %}
{% endif %}

Note that we are using two submit inputs for each form, and all of them have
bookmarks_toggle html class: this is not required, but it makes easier for
a Javascript to show and hide them based on AJAX request, as described below.

See Forms reference to know more about forms, and Templatetags reference
for further explanation about provided templatetags.

Conditional bookmarks

Assume we want the system to automatically assign a key to bookmarks based on
some conditions.

For example, we want users to express an interest for not yet released
films, or to like them when they finally are on theaters.

So we need to switch between two keys (let’s say interests and likes)
based on release status of the film:

import datetime
from bookmarks.handlers import library, Handler

class FilmHandler(Handler):

 allowed_keys = ('interests', 'likes')

 def get_key(self, request, instance, key=None):
 if key is None:
 today = datetime.date.today()
 key = 'interests' if instance.release_date < today else 'likes'
 return key

library.register(Film, FilmHandler)

Nothing remains but to retreive the form in the template
without specifying the key to use.

Add/remove bookmarks using links

Sometimes you may want to use links instead of submit inputs to let users
add or remove bookmarks.

This is achievable using a little bit of Javascript, and jQuery of course:

{% bookmark_form for article as form %} {# <-- note the 'using' argument #}

{% if form %}
 {% if user.is_authenticated %}
 <form action="{% url bookmarks_bookmark %}" method="post" accept-charset="UTF-8" class="bookmarks_form">
 {% csrf_token %}
 {{ form }}
 {% with form.bookmark_exists as exists %}

 Follow

 Stop following)

 {% endwith %}
 Errors during process
 </form>
 {% else %}
 Handle anonymous users.
 {% endif %}
{% endif %}

This is only an example of how to submit a form using the onclick event of
a link.

Using AJAX

In all the examples seen above, the form is used with some tricks:

	the form class is bookmarks_form

	we use two elements to submit the form, one for adding and one
for removing a bookmark, and one of them is deactivated (not displayed)

	theese two elements have bookmarks_toggle html class

	there is a hidden element with class error

They are really needed only if you want to use AJAX in the bookmark process
loading in the template jQuery and the provided bookmarks.js, e.g.:

{% bookmark_form for article as form %}

<script src="path/to/jquery.js" type="text/javascript"></script>
<script src="{{ STATIC_URL }}bookmarks/bookmarks.js" type="text/javascript"></script>

...

The Javascript performs various operations:

	POST data to the server using AJAX

	toggle the elements having bookmarks_toggle html class

	if errors occurs during process, show the element having error class

	trigger the bookmarked event on the form, with data returned by
the server, e.g.:

{
 'key': 'the_bookamrk_key',
 'bookmark_id': bookmark.id,
 'user_id': <the id of the bookmarker>,
 'created': <True if bookmark is created, False otherwise>,
}

Performance and database denormalization

One goal of Django Generic Bookmarks is to provide a generic solution to
connect model instances to users without the need to edit your (or third party)
models.

Sometimes, however, you may want to denormalize data, for example
because you need to minimize queries for tables with a lot of
records, or for backward compatibility with legacy code.

Assume you want to store the bookmarks count for your model instances.
For example, we want to store the number of users who liked an article.

This is easily achievable, again, customizing the handler, e.g.:

from bookmarks.handlers import library, Handler

class ArticleHandler(Handler):

 def post_save(self, request, bookmark, added):
 if bookmark.key == 'likes':
 count = self.backend.filter(key=bookmark.key).count()
 instance = bookmark.content_object
 instance.num_likes = count
 instance.save()

library.register(Article, ArticleHandler)

Bookmarks and cache

See ajax_bookmark_form in Templatetags reference.

Retreiving bookmarks

The backend used to store and retreive bookmarks is always accessible
from the library registry.

While a complete description of backends can be found in Backends reference,
here is a brief summary of the API:

from bookmarks.handlers import library

get all bookmarks saved by a user
bookmarks = library.backend.filter(user=user)

get all bookmarks of a specified instance and key
bookmarks = library.backend.filter(instance=article, key='likes')

get all articles bookmarks
bookmarks = library.backend.filter(model=Article)

add/remove bookmarks
bookmark = library.backend.add(user, article, 'likes')
bookmark = library.backend.remove(user, article, 'likes')

get a bookmark
bookmark = library.backend.get(user, article, 'likes')

check for bookamrk existance
exists = library.backend.exists(user, article, 'likes')

Note that backend is also present as an attribute of handlers, e.g.:

from bookmarks.handlers import library
handler = library.get_handler(Article)
backend = handler.backend

It is easy to retreive bookmarks in templates using the bookmark
and bookmarks templatetags (see Templatetags reference).

Annotating user’s bookmarks

See annotate_bookmarks function in Models reference.

Deleting model instances

To preserve database integrity, when you delete a model instance
all related bookmarks are contextually deleted too.

Customization

When you register an handler you can customize all the bookmark options, as
seen in Using handlers.

But it is also possible to register an handler without overriding options
or methods, and that handler will work using pre-defined global settings.

This section describes the settings used to globally customize bookmark
handlers, together with their default values.

GENERIC_BOOKMARKS_BACKEND = None

default bookmark model (if None, bookmarks.backends.ModelBackend is used)

to use MongoDB backend you can just write:

GENERIC_BOOKMARKS_BACKEND = 'bookmarks.backends.MongoBackend'

GENERIC_BOOKMARKS_DEFAULT_KEY = 'main'

default key to use for bookmarks when there is only one bookmark-per-content

GENERIC_BOOKMARKS_NEXT_QUERYSTRING_KEY = 'next'

querystring key that can contain the url of the redirection
performed after adding or removing bookmarks

GENERIC_BOOKMARKS_CAN_REMOVE_BOOKMARKS = True

set to False if you want to globally disable bookmarks deletion

GENERIC_BOOKMARKS_MONGODB = {'NAME': '', 'USERNAME': '', 'PASSWORD': '', 'PARAMETERS': {}}

mongodb backend connection parameters

if the instance of MongoDB is executed in localhost without authentication
you can just write:

GENERIC_BOOKMARKS_MONGODB = {"NAME": "bookmarks"}

Templatetags reference

In order to use the following templatetags you must
{% load bookmarks_tags %} in your template.

bookmark_form

	
bookmarks.templatetags.bookmarks_tags.bookmark_form(parser, token)

	Return, as html or as a template variable, a Django form to add or remove
a bookmark for the given instance and key, and for current user.

Usage:

{% bookmark_form for *instance* [using *key*] [as *varname*] %}

The key can be given hardcoded (surrounded by quotes)
or as a template variable.
Note that if the key is not given, it will be generated using
the handler’s get_key method, that, if not overridden, returns
the default key.

If the varname is used then it will be a context variable
containing the form.
Otherwise the form is rendered using the first template found in the order
that follows:

bookmarks/[app_name]/[model_name]/[key]/form.html
bookmarks/[app_name]/[model_name]/form.html
bookmarks/[app_name]/[key]/form.html
bookmarks/[app_name]/form.html
bookmarks/[key]/form.html
bookmarks/form.html

The app_name and model_name refer to the instance given as
argument to this templatetag.

Example:

{% bookmark_form for myinstance using 'mykey' as form %}

{% if form %}
 {% if user.is_authenticated %}
 <form action="{% url bookmarks_bookmark %}" method="post" accept-charset="UTF-8" class="bookmarks_form">
 {% csrf_token %}
 {{ form }}
 {% with form.bookmark_exists as exists %}
 {# another hidden input is created to handle javascript submit event #}
 <input class="bookmarks_toggle" type="submit" value="add"{% if exists %} style="display: none;"{% endif %}/>
 <input class="bookmarks_toggle" type="submit" value="remove"{% if not exists %} style="display: none;"{% endif %}/>
 {% endwith %}
 Error during process
 </form>
 {% else %}
 Handle anonymous users.
 {% endif %}
{% endif %}

	The template variable (or the html) will be None if:

	
	the user is not authenticated

	the instance is not bookmarkable

	the key is not allowed

AJAX is also supported using jQuery, e.g.:

{% load bookmarks_tags %}

<script src="path/to/jquery.js" type="text/javascript"></script>
<script src="{{ STATIC_URL }}bookmarks/bookmarks.js" type="text/javascript"></script>

{% bookmark_form for article %}

ajax_bookmark_form

	
bookmarks.templatetags.bookmarks_tags.ajax_bookmark_form(parser, token)

	Use this just like the bookmark_form templatetag.
The only difference here is that it always render a form template
(so you can’t use the as varname part), and the form template
is rendered using an AJAX request.

This is useful for example when you want to show add/remove
bookamrk interaction for authenticated users even in a cached template.

You need to load jQuery before using this templatetag.

bookmark

	
bookmarks.templatetags.bookmarks_tags.bookmark(parser, token)

	Return as a template variable a bookmark object for the given instance
and key, and for current user.

Usage:

{% bookmark for *instance* [using *key*] as *varname* %}

The key can be given hardcoded (surrounded by quotes)
or as a template variable.
Note that if the key is not given, it will be generated using
the handler’s get_key method, that, if not overridden, returns
the default key.

	The template variable will be None if:

	
	the user is not authenticated

	the instance is not bookmarkable

	the bookmark does not exist

bookmarks

	
bookmarks.templatetags.bookmarks_tags.bookmarks(parser, token)

	Return as a template variable all bookmarks, with possibility to filter
them by user, or to take only bookmarks of a particular model and
using a specified key. It is also possible to reverse the order
of bookmarks (by default they are ordered by date).

Usage:

{% bookmarks [of *model*] [by *user*] [using *key*] [reversed] as *varname* %}

Examples:

{# get all bookmarks saved by myuser #}
{% bookmarks by myuser as myuser_bookmarks %}

{# get all bookmarks for myinstance using mykey #}
{% bookmarks of myinstance using *mykey* as bookmarks %}

{# getting all bookmarks for model 'myapp.mymodel' in reverse order #}
{% bookmarks of 'myapp.mymodel' reversed as varname %}

Note that the args model can be:

	a model name as string (e.g.: ‘myapp.mymodel’)

	a model instance

The key can be given hardcoded (surrounded by quotes)
or as a template variable.

Handlers reference

Default handler

	
class bookmarks.handlers.Handler

	Encapsulates content bookmarking options for a given model.

This class can be subclassed to specify different behaviour and options
for bookmarks of a given model, but can also be used directly, just to
handle default any model using default options.

The default handler uses the project’s settings as options: this
way you can register not customized handlers and then modify
their options just editing the settings file.

Most common bookmarking needs can be handled by subclassing Handler
and changing the values of pre-defined attributes.
The full range of built-in options is as follows.

	
default_key

	default key to use for bookmarks when there is only one
bookmark-per-content (default: ‘main’)

	
allowed_keys

	the bookmark allowed keys
(default: [‘main’])

	
next_querystring_key

	querystring key that can contain the url of the redirection performed
after bookmarking (default: ‘next’)

	
can_remove_bookmarks

	set to False if you want to globally disable bookmarks deletion
(default: True)

	
form_class

	form class that will be used to handle bookmark’s adding and removing
(default: bookmarks.forms.BookmarkForm)

For situations where the built-in options listed above are not sufficient,
subclasses of Handler can also override the methods which
actually perform the bookmarking process, and apply any logic they desire.

See the method’s docstrings for a description of how each method is
used during the bookmarking process.

	
get_key(self, request, instance, key=None)

	Return the bookmark key to be used to save the bookmark.

Subclasses can return different keys based on the request, on
the given target object instance or the optional key
(that can be provided for example by the templatetags).

For example, if you want a different key to be used if the user is
staff, you can override this method in this way:

def get_key(self, request, instance, key=None):
 return 'staff' if request.user.is_superuser else 'normal'

	
allow_key(self, request, instance, key)

	This method is called when the user tries to bookmark an object
using the given bookmark key (e.g. when the bookmark view is
called with POST data).

The bookmarking process continues only if this method returns True
(i.e. a valid key is passed).

For example, if you want two different bookmarks for each
target object, you can use two forms (each providing a different
key, say ‘main’ and ‘other’) and then allow those keys:

def allow_key(self, request, instance, key):
 return key in ('main', 'other')

By default this method allows keys listed in self.allowed_keys.

	
get_form_class(self, request)

	Return the form class that will be used to add or remove bookmarks.
Default is self.form_class.

	
get_form(self, request, **kwargs)

	Return an instance of the form, using given request, the backend
currently used by the handler and all given kwargs.

	
pre_save(self, request, form)

	Called just before the bookmark is added or removed, this method
takes the request and the form instance.

Subclasses can use this method to check if the bookmark can be saved
or deleted, and, if necessary, block the bookmarking process
returning False.

This method is called by a signals.bookmark_pre_save receiver
always attached to the handler by the registry.

It’s up to the developer if override this method or just connect
another listener to the signal: the bookmarking process is killed
if just one receiver returns False.

	
save(self, request, form)

	Save the bookmark to the database.
Must return the saved bookmark.

	
post_save(self, request, bookmark, added)

	Called just after a bookmark is added or removed.

The given arguments are the current request, the just added
or deleted bookmark and the boolean added
(True if the bookmark was added).

This method is called by a signals.bookmark_post_save receiver
always attached to the handler by the registry.

It’s up to the developer if override this method or just connect
another listener to the signal.

By default, this method does noting.

	
ajax_response(self, request, bookmark, created)

	Called by self.response when the request is ajax.
Return a JSON reponse containing:

{
 'key': 'the_bookamrk_key',
 'bookmark_id': bookmark.id,
 'user_id': <the id of the bookmarker>,
 'created': <True if bookmark is created, False otherwise>,
}

	
normal_response(self, request, bookmark, created)

	Called by self.response when the request is not ajax.
Return a redirect response.

	
response(self, request, bookmark, created)

	Callback used by the bookmarking views, called when the user
successfully added or removed a bookmark.

Must return a Django http response (usually a redirect, or
some json if the request is ajax).

The real job is done in the ajax_response and normal_response
methods above.

	
fail(self, request, errors)

	Callback used by the bookmarking views, called when bookmark form
did not validate. Must return a Django http response.

	
remove_all_for(self, sender, instance, **kwargs)

	The target object instance of the model sender, is being deleted,
so we must delete all the bookmarks related to that instance.

This receiver is usually connected by the bookmark registry, when
a handler is registered.

Library

	
class bookmarks.handlers.Registry

	Registry that stores the handlers for each content type bookmarks system.

An instance of this class will maintain a list of one or more models
registered for being bookmarked, and their associated handler classes.

To register a model, obtain an instance of Registry (this module exports
one as library), and call its register method, passing the model class
and a handler class (which should be a subclass of Handler).
Note that both of these should be the actual classes, not instances
of the classes.

To cease bookmarks handling for a model, call the unregister method,
passing the model class.

For convenience, both register and unregister can also accept a list
of model classes in place of a single model; this allows easier
registration of multiple models with the same Handler class.

	
register(self, model_or_iterable, handler_class=None, **kwargs)

	Register a model or a list of models for bookmark handling, using a
particular handler_class, e.g.:

from bookmarks.handlers import library, Handler
register one model
library.register(Article, Handler)
register other two models
library.register([Film, Series], Handler)

If the handler class is not given, the default
bookmarks.handlers.Handler class will be used.

If kwargs are present, they are used to override the handler
class attributes (using instance attributes), e.g.:

library.register(Article, Handler,
 can_remove_bookmarks=False, form_class=MyForm)

Raise AlreadyHandled if any of the models are already registered.
“”“

	
unregister(self, model_or_iterable)

	Remove a model or a list of models from the list of models that will
be handled.

Raise NotHandled if any of the models are not currently registered.

	
get_handler(self, model_or_instance)

	Return the handler for given model or model instance.
Return None if model is not registered.

Forms reference

	
class bookmarks.forms.BookmarkForm(forms.Form)

	Form class to handle bookmarks.

The bookmark is identified by model, object_id and key.
The bookmark is added or removed based on the his existance.

You can customize the app giving a custom form class, following
some rules:

	the form must provide the following fields:

	model -> a string representation of app label and model name
of the bookmarked object (e.g.: ‘auth.user’)

	object_id -> the bookmarked instance id

	key -> the bookmark key

	the form must define the following methods:

	bookmark_exists(self):
return True if the current user has that instance with that key
in his bookmarks

	instance(self):
return the current instance to bookmark or None if the
form data (content_type_id and object_id) is invalid

	save(self):
add or remove a bookmark and return it

	
__init__(self, request, backend, *args, **kwargs)

	Takes the current request, the bookmark’s backend and all
the normal Django form arguments.

	
clean(self)

	Check if an instance with current model and object_id actually
exists in the database, and validate only if the user is authenticated.

	
instance(self)

	Return the bookmarked instance or None if the form is not valid.

This method validates the form.

	
bookmark_exists(self)

	Return True if self.instance is bookmarked by the current user
with the current key.

Raise ValueError if the form is not valid.

This method validates the form.

	
save(self)

	Add or remove the bookmark and return it.

You must call this method only after form validation.

Backends reference

The function of backends is to handle bookmarks retreival and save.
They take care of things like adding or removing a bookmark, and getting
all bookmarks based on some filters.

Writing your own backend

The application ships with a Django model backend and a MongoDB backend,
but you can add your own defining a class with the interface below and
pointing settings.GENERIC_BOOKMARKS_BACKEND to the new customized one.

	
class bookmarks.backends.BaseBackend

	Base bookmarks backend.

Users may want to change settings.GENERIC_BOOKMARKS_BACKEND
and customize the backend implementing all the methods defined here.

	
get_model(self)

	Must return the bookmark model (a Django model or anything you like).
Instances of this model must have the following attributes:

	user (who made the bookmark, a Django user instance)

	key (the bookmark key, as string)

	content_type (a Django content_type instance)

	object_id (a pk for the bookmarked object)

	content_object (the bookmarked object as a Django model instance)

	created_at (the date when the bookmark is created)

	
add(self, user, instance, key)

	Must create a bookmark for instance by user using key.
Must return the created bookmark (as a self.get_model() instance).
Must raise exceptions.AlreadyExists if the bookmark already exists.

	
remove(self, user, instance, key)

	Must remove the bookmark identified by user, instance and key.
Must return the removed bookmark (as a self.get_model() instance).
Must raise exceptions.DoesNotExist if the bookmark does not exist.

	
remove_all_for(self, instance)

	Must delete all the bookmarks related to given instance.

	
filter(self, **kwargs)

	Must return all bookmarks corresponding to given kwargs.

	The kwargs keys can be:

	
	user: Django user object or pk

	instance: a Django model instance

	content_type: a Django ContentType instance or pk

	model: a Django model

	key: the bookmark key to use

	reversed: reverse the order of results

The bookmarks must be an iterable (like a Django queryset) of
self.get_model() instances.

The bookmarks must be ordered by creation date (created_at):
if reversed is True the order must be descending.

	
get(self, user, instance, key)

	Must return a bookmark added by user for instance using key.
Must raise exceptions.DoesNotExist if the bookmark does not exist.

	
exists(self, user, instance, key)

	Must return True if a bookmark given by user for instance
using key exists, False otherwise.

Django

The default backend used if settings.GENERIC_BOOKMARKS_BACKEND is None
is ModelBackend, that uses Django models to store bookmarks.

	
class bookmarks.backends.ModelBackend(BaseBackend)

	Bookmarks backend based on Django models.

This is used by default if no other backend is specified.

MongoDB

In order to use the MongoDB backend you must change your settings file like:

GENERIC_BOOKMARKS_BACKEND = 'bookmarks.backends.MongoBackend'
GENERIC_BOOKMARKS_MONGODB = {"NAME": "bookmarks"}

and then install MongoEngine:

pip install mongoengine

See Customization for a more complete explanation of MongoDB settings.

	
class bookmarks.backends.MongoBackend(BaseBackend)

	Bookmarks backend based on MongoDB.

Class based views

The application provides two generic class based views
(only available if you are using Django >= 1.3).

BookmarksForView

	
class bookmarks.views.generic.BookmarksForView(BookmarksMixin, DetailView)

	Can be used to retreive and display a list of bookmarks of a given object.

This class based view accepts all the parameters that can be passed
to django.views.generic.detail.DetailView.

For example, you can add in your urls.py a view displaying all
bookmarks of a single active article:

from bookmarks.views.generic import BookmarksForView

urlpatterns = patterns('',
 url(r'^(?P<slug>[-\w]+)/bookmarks/$', BookmarksForView.as_view(
 queryset=Article.objects.filter(is_active=True)),
 name="article_bookmarks"),
)

You can also manage bookmarks order (default is by date descending) and
bookmarks keys, in order to retreive only bookmarks for a given key, e.g.:

from bookmarks.views.generic import BookmarksForView

urlpatterns = patterns('',
 url(r'^(?P<slug>[-\w]+)/bookmarks/$', BookmarksForView.as_view(
 model=Article, key='mykey', reversed_order=False),
 name="article_bookmarks"),
)

	Two context variables will be present in the template:

	
	object: the bookmarked article

	bookmarks: all the bookmarks of that article

The default template suffix is '_bookmarks', and so the template
used in our example is article_bookmarks.html.

	
context_bookmarks_name

	The name of context variable containing bookmarks.
Default is ‘bookmarks’.

	
key

	The bookmarks key to use for retreiving bookmarks.
Default is None.

	
reversed_order

	If True, bookmarks are ordered by creation date descending.
Default is True.

	
get_context_bookmarks_name(self, obj)

	Get the variable name to use for the bookmarks.

	
get_key(self, obj)

	Get the key to use to retreive bookmarks.
If the key is None, use all keys.

	
order_is_reversed(self, obj)

	Return True to sort bookmarks by creation date descending.

	
get_bookmarks(self, obj, key, is_reversed)

	Return a queryset of bookmarks of obj.

BookmarksByView

	
class bookmarks.views.generic.BookmarksByView(BookmarksMixin, DetailView)

	Can be used to retreive and display a list of bookmarks saved by a
given user.

This class based view accepts all the parameters that can be passed
to django.views.generic.detail.DetailView, with an exception:
it is not mandatory to specify the model or queryset used to
retreive the user (django.contrib.auth.models.User model is used
by default).

For example, you can add in your urls.py a view displaying all
bookmarks by a single active user:

from bookmarks.views.generic import BookmarksByView

urlpatterns = patterns('',
 url(r'^(?P<pk>\d+)/bookmarks/$', BookmarksByView.as_view(
 queryset=User.objects.filter(is_active=True)),
 name="user_bookmarks"),
)

You can also manage bookmarks order (default is by date descending) and
bookmarks keys, in order to retreive only bookmarks for a given key, e.g.:

from bookmarks.views.generic import BookmarksByView

urlpatterns = patterns('',
 url(r'^(?P<pk>\d+)/bookmarks/$', BookmarksByView.as_view(
 key='mykey', reversed_order=False),
 name="user_bookmarks"),
)

	Two context variables will be present in the template:

	
	object: the user

	bookmarks: all the bookmarks saved by that user

The default template suffix is '_bookmarks', and so the template
used in our example is user_bookmarks.html.

	
context_bookmarks_name

	The name of context variable containing bookmarks.
Default is ‘bookmarks’.

	
key

	The bookmarks key to use for retreiving bookmarks.
Default is None.

	
reversed_order

	If True, bookmarks are ordered by creation date descending.
Default is True.

	
get_context_bookmarks_name(self, obj)

	Get the variable name to use for the bookmarks.

	
get_key(self, obj)

	Get the key to use to retreive bookmarks.
If the key is None, use all keys.

	
order_is_reversed(self, obj)

	Return True to sort bookmarks by creation date descending.

	
get_bookmarks(self, obj, key, is_reversed)

	Return a queryset of bookmarks saved by obj user.

Models reference

Objects defined here are only used if you store bookmarks using
default Django model backend.

Base models

	
class bookmarks.models.Bookmark(models.Model)

	A user’s bookmark for a content object.

This is only used if the current backend stores bookmarks in the database
using Django models.

	
content_type

	the bookmarked instance content type

	
object_id

	the bookmarked instance id

	
content_object

	the bookmarked instance

	
key

	the bookmark key

	
user

	the user who bookmarked the instance
(as a fk to django.contrib.auth.models.User)

	
created_at

	the bookmark creation datetime

	
objects

	the manager used is bookmarks.managers.BookmarksManager (see below)

In bulk selections

	
bookmarks.models.annotate_bookmarks(queryset_or_model, key, user, attr='is_bookmarked')

	Annotate queryset_or_model with bookmarks, in order to retreive from
the database all bookmark values in bulk.

The first argument queryset_or_model must be, of course, a queryset
or a Django model object. The argument key is the bookmark key.

The bookmarks are filtered using given user.

A boolean is inserted in an attr named attr (default=’is_bookmarked’)
of each object in the generated queryset.

Usage example:

for article in annotate_bookmarks(Article.objects.all(), 'favourite',
 myuser, attr='has_a_bookmark'):
 if article.has_a_bookmark:
 print u"User %s likes article %s" (myuser, article)

Abstract models

	
class bookmarks.models.BookmarkedModel(models.Model)

	Mixin for bookmarkable models.

Models subclassing this abstract model gain a bookmarks attribute
allowing accessto the reverse generic relation
to the bookmarks.models.Bookmark.

Managers

	
class bookmarks.managers.BookmarksManager(models.Manager)

	Manager used by Bookmark model.

	
get_for(self, content_object, key, **kwargs)

	Return the instance related to content_object and matching kwargs.
Return None if a bookmark is not found.

	
filter_for(self, content_object_or_model, **kwargs)

	Return all the instances related to content_object_or_model and
matching kwargs. The argument content_object_or_model can be
both a model instance or a model class.

	
filter_with_contents(self, **kwargs)

	Return all instances retreiving content objects in bulk in order
to minimize db queries, e.g. to get all objects bookmarked by a user:

for bookmark in Bookmark.objects.filter_with_contents(user=myuser):
 bookmark.content_object # this does not hit the db

	
add(self, user, content_object, key)

	Add a bookmark, given the user, the model instance and the key.

Raise a Bookmark.AlreadyExists exception if that kind of
bookmark is present in the db.

	
remove(self, user, content_object, key)

	Remove a bookmark, given the user, the model instance and the key.

Raise a Bookmark.DoesNotExist exception if that kind of
bookmark is not present in the db.

	
remove_all_for(self, content_object)

	Remove all bookmarks for the given model instance.

The application uses this whenever a bookmarkable model instance
is deleted, in order to mantain the integrity of the bookmarks table.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bookmarks	

 	
 	
 bookmarks.backends	

 	
 	
 bookmarks.forms	

 	
 	
 bookmarks.handlers	

 	
 	
 bookmarks.managers	

 	
 	
 bookmarks.models	

 	
 	
 bookmarks.templatetags.bookmarks_tags	

 	
 	
 bookmarks.views.generic	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | U

_

 	
 	__init__() (bookmarks.forms.BookmarkForm method)

A

 	
 	add() (bookmarks.backends.BaseBackend method)

 	(bookmarks.managers.BookmarksManager method)

 	ajax_bookmark_form() (in module bookmarks.templatetags.bookmarks_tags)

 	ajax_response()

 	(bookmarks.handlers.Handler method)

 	
 	allow_key()

 	(bookmarks.handlers.Handler method)

 	allowed_keys (bookmarks.handlers.Handler attribute)

 	annotate_bookmarks() (in module bookmarks.models)

B

 	
 	BaseBackend (class in bookmarks.backends)

 	Bookmark (class in bookmarks.models)

 	bookmark() (in module bookmarks.templatetags.bookmarks_tags)

 	bookmark_exists() (bookmarks.forms.BookmarkForm method)

 	bookmark_form() (in module bookmarks.templatetags.bookmarks_tags)

 	BookmarkedModel (class in bookmarks.models)

 	BookmarkForm (class in bookmarks.forms)

 	bookmarks() (in module bookmarks.templatetags.bookmarks_tags)

 	bookmarks.backends (module)

 	
 	bookmarks.forms (module)

 	bookmarks.handlers (module)

 	bookmarks.managers (module)

 	bookmarks.models (module)

 	bookmarks.templatetags.bookmarks_tags (module)

 	bookmarks.views.generic (module)

 	BookmarksByView (class in bookmarks.views.generic)

 	BookmarksForView (class in bookmarks.views.generic)

 	BookmarksManager (class in bookmarks.managers)

C

 	
 	can_remove_bookmarks (bookmarks.handlers.Handler attribute)

 	clean() (bookmarks.forms.BookmarkForm method)

 	content_object (bookmarks.models.Bookmark attribute)

 	
 	content_type (bookmarks.models.Bookmark attribute)

 	context_bookmarks_name (bookmarks.views.generic.BookmarksByView attribute)

 	(bookmarks.views.generic.BookmarksForView attribute)

 	created_at (bookmarks.models.Bookmark attribute)

D

 	
 	default_key (bookmarks.handlers.Handler attribute)

E

 	
 	exists() (bookmarks.backends.BaseBackend method)

F

 	
 	fail() (bookmarks.handlers.Handler method)

 	filter() (bookmarks.backends.BaseBackend method)

 	
 	filter_for() (bookmarks.managers.BookmarksManager method)

 	filter_with_contents() (bookmarks.managers.BookmarksManager method)

 	form_class (bookmarks.handlers.Handler attribute)

G

 	
 	get() (bookmarks.backends.BaseBackend method)

 	get_bookmarks() (bookmarks.views.generic.BookmarksByView method)

 	(bookmarks.views.generic.BookmarksForView method)

 	get_context_bookmarks_name() (bookmarks.views.generic.BookmarksByView method)

 	(bookmarks.views.generic.BookmarksForView method)

 	get_for() (bookmarks.managers.BookmarksManager method)

 	get_form()

 	(bookmarks.handlers.Handler method)

 	
 	get_form_class()

 	(bookmarks.handlers.Handler method)

 	get_handler() (bookmarks.handlers.Registry method)

 	get_key()

 	(bookmarks.handlers.Handler method)

 	(bookmarks.views.generic.BookmarksByView method)

 	(bookmarks.views.generic.BookmarksForView method)

 	get_model() (bookmarks.backends.BaseBackend method)

H

 	
 	Handler (class in bookmarks.handlers)

I

 	
 	instance() (bookmarks.forms.BookmarkForm method)

K

 	
 	key (bookmarks.models.Bookmark attribute)

 	(bookmarks.views.generic.BookmarksByView attribute)

 	(bookmarks.views.generic.BookmarksForView attribute)

M

 	
 	ModelBackend (class in bookmarks.backends)

 	
 	MongoBackend (class in bookmarks.backends)

N

 	
 	next_querystring_key (bookmarks.handlers.Handler attribute)

 	
 	normal_response()

 	(bookmarks.handlers.Handler method)

O

 	
 	object_id (bookmarks.models.Bookmark attribute)

 	objects (bookmarks.models.Bookmark attribute)

 	
 	order_is_reversed() (bookmarks.views.generic.BookmarksByView method)

 	(bookmarks.views.generic.BookmarksForView method)

P

 	
 	post_save()

 	(bookmarks.handlers.Handler method)

 	
 	pre_save()

 	(bookmarks.handlers.Handler method)

R

 	
 	register() (bookmarks.handlers.Registry method)

 	Registry (class in bookmarks.handlers)

 	remove() (bookmarks.backends.BaseBackend method)

 	(bookmarks.managers.BookmarksManager method)

 	remove_all_for() (bookmarks.backends.BaseBackend method)

 	(bookmarks.handlers.Handler method)

 	(bookmarks.managers.BookmarksManager method)

 	
 	response()

 	(bookmarks.handlers.Handler method)

 	reversed_order (bookmarks.views.generic.BookmarksByView attribute)

 	(bookmarks.views.generic.BookmarksForView attribute)

S

 	
 	save()

 	(bookmarks.forms.BookmarkForm method)

 	(bookmarks.handlers.Handler method)

U

 	
 	unregister() (bookmarks.handlers.Registry method)

 	
 	user (bookmarks.models.Bookmark attribute)

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/file.png

nav.xhtml

 Table of Contents

 		django-generic-bookmarks

 		Getting started

 		Requirements

 		Installation

 		Configuration

 		Quickstart

 		Using handlers

 		Custom Handlers

 		Handlers API

 		1. Key management

 		2. Bookmark saving

 		3. HTTP Response

 		Usage and examples

 		Simple bookmarks

 		Multiple types of bookmarks

 		Conditional bookmarks

 		Add/remove bookmarks using links

 		Using AJAX

 		Performance and database denormalization

 		Bookmarks and cache

 		Retreiving bookmarks

 		Annotating user's bookmarks

 		Deleting model instances

 		Customization

 		Templatetags reference

 		bookmark_form

 		ajax_bookmark_form

 		bookmark

 		bookmarks

 		Handlers reference

 		Default handler

 		Library

 		Forms reference

 		Backends reference

 		Writing your own backend

 		Django

 		MongoDB

 		Class based views

 		BookmarksForView

 		BookmarksByView

 		Models reference

 		Base models

 		In bulk selections

 		Abstract models

 		Managers

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

